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 Abstract: The mathematical description of wave boundary value problems contains functional equations. 

They can be: matrix differential, and/or partial differential, and/or integral, and/or integral-differential equations. They 

are associated with integral and/or integral-differential boundary conditions. The description can be algebraized by 

a suitable integral transformation. The derivatives and integrals in the functional equations with respect to the time 

variable "t" are transformed into polynomial functions of the complex variable "s". This transformation is performed 

according to the image acquisition rules. The general scheme of the solution can be visualized by building an 

ORIENTED GRAPH of the task - BLOCK DIAGRAM. This graph represents the core of the structural solution. From 

it, the general complex transfer function of the task can easily be determined ANALYTICALLY. This function can 

be multiplied in the complex domain by the representation of external loadings. As a result, the image of the sought 

solution (integral) will be obtained. From this image, by inverse integral transformation, the desired solution in the 

time domain can be obtained. The kernel of the structural solution (DIRECTED GRAPH) can also be created in the 

time domain without looking for a transfer function. In this case, an equivalent solution (integral) of the wave 

boundary value problem is obtained. The solving system of equations in this time domain is DIFFERENTIAL. Efforts 

to ANALYTICALLY obtain the general transfer function of the task in the complex area depend not so much on the 

type of derivatives and/or integrals over the time variable "t" involved in the initial mathematical description, as on 

the STRUCTURE AND TYPE of the considered limited or unlimited spaces (areas) and from the structure and type 

of their BOUNDARIES [10]. The sought integrals in the space 𝐿2 can be obtained ANALYTICALLY or 

NUMERICALLY from the solving algebraic system of equations with considered boundary and initial conditions. 
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Резюме: Математическото описание на вълнови гранични задачи съдържа функционални 
уравнения. Те могат да бъдат: матрични диференциални, и/или частни диференциални, и/или 
интегрални, и/или интегродиференциални уравнения. Свързани са с интегрални и/или 
интегродиференциални гранични условия. Описанието може да се алгебризира чрез подходящо 
интегрално преобразование. Производните и интегралите във функционалните уравнения по 
отношение на времевата променлива „t” се трансформират в полиномиални функции на комплексната 

mailto:skarapetkov@yahoo.com
mailto:skarapetkov@yahoo.com


69 
 

променлива “s”. Тази трансформация се извършва съгласно правилата за получаване на изображения. 
Общата схема на решението може да се визуализира  чрез построяването на ОРИЕНТИРАН ГРАФ на 
задачата - БЛОКОВА СХЕМА. Този граф представлява ядро на структурното решение. От него лесно 
може да се определи АНАЛИТИЧНО общата комплексна предавателна функция на задачата. Тази 
функция може да бъде умножена  в комплексната област по изображенето на външните въздействия. 
В резултат ще се получи изображението на търсеното решение (интеграл). От това изображение чрез 
обратно интегрално преобразувание може да се получи самото търсено решение във времевата 
област. Ядрото на структурното решение (ОРИЕНТИРАН ГРАФ) може да се създаде и във временната 
област, без да се търси предавателна функция. В този случаи се получава  еквивалентно решение 
(интеграл) на вълновата гранична задача. Разрешаващата система уравненя в тази временна област 
е ДИФЕРЕНЧНА. Усилията за АНАЛИТИЧНО получаване на общата предавателна функция на задачата 
в комплекснста област, зависят не толкова от вида на участващите в началното математическо 
описание производни и/или интеграли по времевата променлива „t”, колкото от СТРУКТУРАТА И ВИДА 
на разглежданите ограничени или неограничени пространства (области) и от структурата и вида на 
техните ГРАНИЦИ [10]. Търсените интеграли в пространството 𝐿2 могат да се получат 
АНАЛИТИЧНО или ЧИСЛЕНО от разрешаващата алгебрична система уравнения с отчетени гранични 
и начални условия. 

 

 

1. SH (polarized in horizontal plane) wave propagation through multi layered media. The wave 

propagation process, at the direction of the axis x perpendicular to the investigated multilayered media 

(Fig. 1), could be described by the following equation: 

 

(1)   
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 − 𝑉𝑆𝐻
2 𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 = 0 , 

 

където 𝑉𝑆𝐻 = √
𝜇

𝜌
  is the wave propagation velocity for the shear waves SH, μ=const is the Lame 

coefficient, ρ=constant represents mass density. The function w(x,t) is the anti plane (X, Y) component 

of the displacement vector in the direction parallel to the axis Z. On the boundary between the two 

neighbouring layers “i” and “i+1” the corresponding boundary conditions are satisfied. These boundary 

conditions represent that the unknown displacements and forces (stresses) are continuous: 

 

(2)  𝑤(𝑥, 𝑡)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑖 = 𝑤(𝑥, 𝑡)𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑖+1      ,                          

(3)  𝑃𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑖 =  (𝜎𝑖𝑗𝑛𝑗)

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑖
= − 𝑃𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑖+1   = −    (𝜎𝑖𝑗𝑛𝑗)
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑖+1
 ,      

 

where Pi is the boundary force vector of the corresponding layer, “σij” is the stress tensor, and “nj” is 

the corresponding normal vector. The initial conditions with respect to the displacement and to the first 

difference are homogeneous. The both functions depend on the spatial variable “x” and time argument 

“t” in the initial moment “t=0”:  
 

(4)    𝑤(𝑥, 𝑡) |𝑡=0 =   0,         
𝜕𝑤(𝑥,𝑡)

𝜕𝑡
|

𝑡=0
=   0. 

 

2. For the DIRECT problem (identifying the free surface signal from a set signal in the bedrock) 

the displacement boundary conditions are set as a known function of the time variable “t”: 
 

(5)  𝑤(0, 𝑡) =  𝑋𝑏 (𝑡) .    

The boundary conditions in terms of forces on the free surface are homogeneous for both the DIRECT 

and the INVERSE (by a given signal on the free surface to identify what the signal was in the bed rock) 

problems are HOMOGENEOUS: 
 

 (6) 𝑃
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

=  (𝜎𝑖𝑗𝑛𝑗)
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

= 0.           

                             

3.  On the other hand, for the INVERSE problem on the free surface, the displacement 

boundary condition is given in the mode of the known time function “t”: 
 

(7)   𝑤(𝑙, 𝑡) =  𝑋𝑠 (𝑡).                                        
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4. Structural mathematical model of the multi layered structure. The structural model of the 
multilayer media is shown in Fig. 1. The SH Wave Propagation Reflect – Pass Perpendicular Process 
is illustrated on the Fig.1 a. The Block - Diagram Model of the media under investigation is shown in 
Fig.1 b. The Flow Graph of the system signals is shown in the Fig.1 c. 

The above formulated SH wave boundary condition problem (1)–(7), could be solved by a 
system of differential equations, initial and boundary conditions. This differential system consists of 
following elements: 

 n equations in the mode (1), one differential equations for each layer, because the 
velocity function 𝑉(𝑥)  depending on spatial co-ordinate x is discontinued and is of a 
terrace-like type; 

 2(n - 1) boundary conditions in the mode (2), (3); 
 surface boundary condition in the mode (6);  
 initial conditions in the mode (4), 
 and either of boundary conditions (cinematic excitation) (5) for the DIRECT problem or 

(7) for the INVERSE problem. 
The above formulated wave boundary problem (1)–(7) can be transformed in the complex 

domain. The solution of the investigated problem (1)–(7) in the complex domain could be obtained by 
solving the following algebraic system of equations, which could be solved analitically (analitical solution 
of the DIRECT and INVERSE problems) as follows: 
 

 

 

(8) 

 

 

 

 

 

 The unknown variables in the system (8) (X1, X2,...,Xi.,...Xn, X*1, X*2,..., X*i,..., X*n) represents the 

displacements, velocities or accelerations of the media particles under investigation.  The coefficients 

β=β(s)= Re β (s)+ j Im β (s) in the system (8) are reflection and refraction layer ratios (see Fig. 1 b,  

Fig. 1 c). They are known complex functions of the parameter of integral transformation “s”. The function 

matrix of the system (8) is asymmetric. Based on this fact, the common transfer function of the problem 

Ψ(s) could be obtained by recurrent elimination of the system parameters. This function physically 

represents the quotient between images of input and output signals of the geological structure under 

investigation: 

(9) 
 s =

{  sXoutput }

{  sXinput }

 

 

Substituting the analytical complex parameter “s” by the numerical imaginary parameter “jω” into system 

of equations (8), it is possible to calculate numerically the formulated DIRECT and INVERSE problems 

by means of Fourier integral transformation (numerical solution of the DIRECT and INVERSE problems). 

 

 5. Quadruple symmetric real functions - Fig.2. The coefficients β=β(jɷ)=Reβ(ɷ)+ jImβ(ɷ) in 

the system (8) are reflection and refraction layer ratios according to the Willebrord Snellius (1580–1626) 

low (see Fig. 1 b, Fig. 1 c). They are known complex functions of the frequency ɷ. The rheology 

properties of the layers under investigation from structural model in Fig. 1 are presented in the 

mathematical description (8) by corresponding layer transfer function signed W i(jɷ) and corresponding 

reflection and refraction coefficients signed βi(jɷ).  
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Fig. 1. Multilayered Media Structural Model. a) SH Wave Propagation Reflect – Pass    

b) Perpendicular Process. c) Signal Flow Graph 

 
 By suitable selection of the real and imaginary parts of the coefficients β i(jɷ) can be obtained 

quadruple symmetric real functions presented in the first quadrant of the Fig. 2 in a capacity of searched 

problem solution. In case of real and imaginary parts of the coefficients βi according to the conditions of 

Theorem 1 of the present paper, will get the signal in the second quadrant. In case of real and imaginary 

parts of the coefficients βi according to the conditions of Theorem 3 of the previous paper, will get the 

signal in the third quadrant. The signals from third quadrant and from fourth quadrant can be obtained 

also in case of real and imaginary parts of the coefficients βi according to the conditions of Theorems 2 

and 4 of the previous paper respectively. The first five theorems (they are published [8] as a sub 
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conditions in the theorem signed by * and here points) in previous publication describes the Symmetry 

- Conjugation relation [1-11]: 

• Theorem 1 (The phenomenon “Symmetry” in the time domain corresponds to the phenomenon 

“Conjugation” in the frequency domain).  The complex Fourier F(jω) spectra of the symmetric real 

functions in the first and second quadrants are conjugated as well as. 

• Theorem 2 The complex Fourier F(jω) spectra of the symmetric real functions in the third and 

fourth quadrants are conjugated respectively. 

• Theorem 3 (The phenomenon “Anti Symmetry” in the time domain corresponds to the 

phenomenon “Anti Conjugation” in the frequency domain). The complex Fourier F(jω) spectra of the anti 

symmetric real functions in the first and third quadrant are anti conjugated as well as. 

• Theorem 4. The amplitudes of the functions in first and second quadrants are both positive, while 

these of the amplitudes for the functions for third and four quadrants are both negative. The functions 

under investigation could be of arbitrary amplitudes – negative or positive. The corresponding complex 

Fourier F(jω) spectra also are of arbitrary type amplitudes - negative or positive. 

• Theorem 5 (Frequency indistinguishable). Four quadruple symmetric real functions are 

frequency indistinguishable. 

• Theorem 6 [9,11] (The phenomenon “Symmetry” in the time domain corresponds to the 

phenomenon “Conjugation” in the frequency domain. The phenomenon “Anti Symmetry” in the time 

domain corresponds to the phenomenon “Anti Conjugation” in the frequency domain. The simultaneous 

operation of the Theorems 1 and 3 leads to even and odd decomposition of the Fourier complex 

spectrum of the common function 𝐹𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗𝜔) with length N in the time domain. This result 

represents spectral function, composed by the equivalent nonzero real and imaginary spectral parts with 

length N/2 in the frequency domain 𝑅е
𝑒𝑣𝑒𝑛 𝑙𝑒𝑓𝑡(𝜔) and 𝑗𝐼𝑚

𝑜𝑑𝑑 𝑟𝑖𝑔ℎ𝑡(𝜔) ) as follows: 
 

(10)    𝐹𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗𝜔) =   2 (𝑅е
𝑒𝑣𝑒𝑛 𝑙𝑒𝑓𝑡(𝜔) + 𝑗𝐼

𝑚
𝑜𝑑𝑑 𝑟𝑖𝑔ℎ𝑡(𝜔)). 

 
 

 

 
 

Fig. 2. Quadruple symmetric real functions 

 
6. Conclusions. The report presents a structural analytical approach to solving wave boundary 

value problems - for example SH wave propagation in multi-layered structures [3,4,6,7,8,9,10,11]. The 
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complex algebraic system (8) admits an analytic solution, since the transfer functions of the individual 

layers are fractional-rational functions. The transfer function of the general boundary value problem, 

which can be obtained from (8), is also a fractional-rational function. Such an analytical solution of wave 

boundary value problems in multi-layered media is proposed here for the first time. The theorems proved 

in the report provide an opportunity for an effective study of the obtained final integrals in the time domain 

of the investigated wave boundary value problems. Theorem 6 [9, 11], for example, can be interpreted 

as an analog variant of the Cooley and Tuckey FFT scheme [5]. 
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